Estimation of Structured Distances to Singularity for Matrix Pencils with Symmetry Structures: A Linear Algebra--Based Approach

نویسندگان

چکیده

We study the structured distance to singularity for a given regular matrix pencil $A+sE$, where $(A,E)\in \mathbb S \subseteq (\mathbb C^{n,n})^2$. This includes Hermitian, skew-Hermitian, $*$-even, $*$-odd, $*$-palindromic, T-palindromic, and dissipative Hamiltonian pencils. present purely linear algebra-based approach derive explicit computable formulas nearest $(A-\Delta_A)+s(E-\Delta_E)$ such that $A-\Delta_A$ $E-\Delta_E$ have common null vector. then obtain family of lower bounds unstructured distances singularity. Numerical experiments suggest in many cases, there is significant difference between distances. This extends polynomials with higher degrees.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The distance to instability and singularity for structured matrix pencils

The stability analysis of dynamical systems leads to the eigenstructure analysis of matrix pencils λE−A. The associated system is asymptotically stable if the pencil is regular, all finite eigenvalues are in the left half plane and the infinite eigenvalues are semisimple. There are several challenging open problems that will be discussed. The first is the distance to instability, i.e. the small...

متن کامل

a new type-ii fuzzy logic based controller for non-linear dynamical systems with application to 3-psp parallel robot

abstract type-ii fuzzy logic has shown its superiority over traditional fuzzy logic when dealing with uncertainty. type-ii fuzzy logic controllers are however newer and more promising approaches that have been recently applied to various fields due to their significant contribution especially when the noise (as an important instance of uncertainty) emerges. during the design of type- i fuz...

15 صفحه اول

a new approach to credibility premium for zero-inflated poisson models for panel data

هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...

15 صفحه اول

Structured Eigenvalue Backward Errors of Matrix Pencils and Polynomials with Palindromic Structures

We derive formulas for the backward error of an approximate eigenvalue of a ∗palindromic matrix polynomial with respect to ∗-palindromic perturbations. Such formulas are also obtained for complex T -palindromic pencils and quadratic polynomials. When the T -palindromic polynomial is real, then we derive the backward error of a real number considered as an approximate eigenvalue of the matrix po...

متن کامل

Structured Eigenvalue Backward Errors of Matrix Pencils and Polynomials with Hermitian and Related Structures

We derive a formula for the backward error of a complex number λ when considered as an approximate eigenvalue of a Hermitian matrix pencil or polynomial with respect to Hermitian perturbations. The same are also obtained for approximate eigenvalues of matrix pencils and polynomials with related structures like skew-Hermitian, ∗-even and ∗-odd. Numerical experiments suggest that in many cases th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Matrix Analysis and Applications

سال: 2022

ISSN: ['1095-7162', '0895-4798']

DOI: https://doi.org/10.1137/21m1423269